Fault-Tolerant Control using Adaptive Time-Frequency Method in Bearing Fault Detection for DFIG Wind Energy System
نویسنده
چکیده
With the advances in power electronic technology, doubly-fed induction generators (DFIG) have increasingly drawn the interest of the wind turbine industry. To ensure the reliable operation and power quality of wind power systems, the fault-tolerant control for DFIG is studied in this paper. The faulttolerant controller is designed to maintain an acceptable level of performance during bearing fault conditions. Based on measured motor current data, an adaptive statistical time-frequency method is then used to detect the fault occurrence in the system; the controller then compensates for faulty conditions. The feature vectors, including frequency components located in the neighborhood of the characteristic fault frequencies, are first extracted and then used to estimate the next sampling stator side current, in order to better perform the current control. Early fault detection, isolation and successful reconfiguration would be very beneficial in a wind energy conversion system. The feasibility of this fault-tolerant controller has been proven by means of mathematical modeling and digital simulation based on Matlab/Simulink. The simulation results of the generator output show the effectiveness of the proposed fault-tolerant controller.
منابع مشابه
Sensor Fault Tolerant Control For DFIG With WECS
Wind Energy Conversion Systems are the most striking renewable energy resources available to generate the electricity. Doubly-fed Induction Generator (DFIG) based wind turbine with variable speed is the most common wind turbine in the growing wind market. In any WECS, power flow must be maintained at all instant irrespective of any fault in the system. This paper deals with fault tolerant contr...
متن کاملVariable Speed Wind Turbine DFIG Back to Back Converters Open-Circuit Fault Diagnosis by Using of Combiniation Signal-Based and Model-Based Methodes
Condition monitoring (CM) and Fault Detection (FD) of wind turbine lead to increase in reliability and availability of turbine. IGBT open circuit of wind turbine converter will bring about depletion in output current of converter and as a result, reduction in production of wind turbine power. In this research, back to back converter IGBT open - gate fault for wind turbine based on DFIG is detec...
متن کاملA new technique for bearing fault detection in the time-frequency domain
This paper presents a new Fast Kurtogram Method in the time-frequency domain using novel types of statistical features instead of the kurtosis. For this study, the problem of four classes for Bearing Fault Detection is investigated using various statistical features. This research is conducted in four stages. At first, the stability of each feature for each fault mode is investigated. Then, res...
متن کاملRobust Model- Based Fault Detection and Isolation for V47/660kW Wind Turbine
In this paper, in order to increase the efficiency, to reduce the cost and to prevent the failures of wind turbines, which lead to an extensive break down, a robust fault diagnosis system is proposed for V47/660kW wind turbine operated in Manjil wind farm, Gilan province, Iran. According to the acquired data from Iran wind turbine industry, common faults of the wind turbine such as sensor fault...
متن کاملProtection of DFIG wind turbine using fuzzy logic control
Double Fed Induction Generator; Crowbar protection; ANFIS; Fuzzy logic; Fault current and voltages Abstract In the last 15 years, Double Fed Induction Generator (DFIG) had been widely used as a wind turbine generator, due its various advantages especially low generation cost so it becomes the most important and promising sources of renewable energy. This work focuses on studying of using DFIG a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014